WHAT IF Check report

This file was created 2017-10-06 from WHAT_CHECK output by a conversion script. If you are new to WHAT_CHECK, please study the pdbreport pages. There also exists a legend to the output.

Verification log for /srv/data/pdb/flat/pdb1hzp.ent

Checks that need to be done early-on in validation

Note: Introduction

WHAT CHECK needs to read a PDB file before it can check it. It does a series of checks upon reading the file. The results of these checks are reported in this section (section 2.1). The rest of the report will be more systematic in that section 2.2 reports on administrative problems. Section 2.3 gives descriptive output that is not directly validating things but more telling you how WHAT CHECK interpreted the input file. Section 2.4 looks at B-factors, occupancies, and the presence/absence of (spurious) atoms. Section 2.5 deals with nomenclature problems. Section 2.6 deals with geometric problems like bond lengths and bond angles. Section 2.7 deals with torsion angle issues. Section 2.8 looks at atomic clashes. Section 2.9 deals with packing, accessibility, etc, issues. Section 2.10 deals with hydrogen bonds, ion packing, and other things that can be summarized under the common name charge-charge interactions. Section 2.11 gives a summary of whole report and tells you (if applicable) which symmetry matrices were used. Section 2.12 tells the crystallographer which are the things most in need of manual correction. And the last section, section 2.13, lists all residues sorted by their need for visual inspection in light of the electron density.

Warning: Class of conventional cell differs from CRYST1 cell

The crystal class of the conventional cell is different from the crystal class of the cell given on the CRYST1 card. If the new class is supported by the coordinates this is an indication of a wrong space group assignment.

The CRYST1 cell dimensions

    A    =  64.082  B   =  54.779  C    =  89.152
    Alpha=  90.000  Beta=  90.300  Gamma=  90.000

Dimensions of a reduced cell

    A    =  54.779  B   =  64.082  C    =  89.152
    Alpha=  90.300  Beta=  90.000  Gamma=  90.000

Dimensions of the conventional cell

    A    =  54.779  B   =  64.082  C    =  89.152
    Alpha=  89.700  Beta=  90.000  Gamma=  90.000

Transformation to conventional cell

 |  0.000000  1.000000  0.000000|
 | -1.000000  0.000000  0.000000|
 |  0.000000  0.000000  1.000000|

Crystal class of the cell: MONOCLINIC

Crystal class of the conventional cell: ORTHORHOMBIC

Space group name: P 1 21 1

Bravais type of conventional cell is: P

Note: Header records from PDB file

Header records from PDB file.

HEADER    TRANSFERASE                             25-JAN-01   1HZP
CRYSTAL STRUCTURE OF THE MYOBACTERIUM TUBERCULOSIS BETA-KETOACYL-ACYL
 CARRIER PROTEIN SYNTHASE III
FATTY ACID BIOSYNTHESIS, MYOBACTERIUM TUBERCULOSIS, STRUCTURAL BASIS
 FOR SUBSTRATE SPECIFICITY, STRUCTURAL GENOMICS, PSI, PROTEIN
 STRUCTURE INITIATIVE, TB STRUCTURAL GENOMICS CONSORTIUM, TBSGC,
 TRANSFERASE
JRNL        J.N.SCARSDALE,G.KAZANINA,X.HE,K.A.REYNOLDS,H.T.WRIGHT
JRNL        CRYSTAL STRUCTURE OF THE MYCOBACTERIUM TUBERCULOSIS
JRNL        BETA-KETOACYL-ACYL CARRIER PROTEIN SYNTHASE III
JRNL        REF    J.BIOL.CHEM.                  V. 276 20516 2001
JRNL        REFN                   ISSN 0021-9258
JRNL        PMID   11278743
JRNL        DOI    10.1074/JBC.M010762200

Note: Non crystallographic symmetry RMS plot

The plot shows the RMS differences between two similar chains on a residue- by-residue basis. Individual "spikes" can be indicative of interesting or wrong residues. If all residues show a high RMS value, the structure could be incorrectly refined.

Chain identifiers of the two chains: A and B

All-atom RMS fit for the two chains : 0.384
CA-only RMS fit for the two chains : 0.254

Note: Non crystallographic symmetry backbone difference plot

The plot shows the differences in backbone torsion angles between two similar chains on a residue-by-residue basis. Individual "spikes" can be indicative of interesting or wrong residues. If all residues show high differences, the structure could be incorrectly refined.

Chain identifiers of the two chains: A and B

Warning: New symmetry found

Independent molecules in the asymmetric unit actually look like symmetry relatives. This fact needs manual checking.

Note: Counting molecules and matrices

The parameter Z as given on the CRYST card represents the molecular multiplicity in the crystallographic cell. Z equals the number of matrices of the space group multiplied by the number of NCS relations. These numbers seem to be consistent.

Space group as read from CRYST card: P 1 21 1
Number of matrices in space group: 2
Highest polymer chain multiplicity in structure: 2
Highest polymer chain multiplicity according to SEQRES: 2
No explicit MTRIX NCS matrices found in the input file
Value of Z as found on the CRYST1 card: 4
Z, spacegroup, and NCS seem to agree administratively

Note: Matthews coefficient OK

The Matthews coefficient [REF] is defined as the density of the protein structure in cubic Angstroms per Dalton. Normal values are between 1.5 (tightly packed, little room for solvent) and 4.0 (loosely packed, much space for solvent). Some very loosely packed structures can get values a bit higher than that.

Molecular weight of all polymer chains: 69595.820
Volume of the Unit Cell V= 312951.969
Space group multiplicity: 2
No NCS symmetry matrices (MTRIX records) found in PDB file
Matthews coefficient for observed atoms and Z: Vm= 2.248
Be aware though that the number of residues with missing atoms is: 38
One BIOMT matrix observed in the PDB file, but that is the unitary one
Matthews coefficient read from REMARK 280 Vm= 2.210
Vm by authors and this calculated Vm agree remarkably well

Note: All atoms are sufficiently far away from symmetry axes

None of the atoms in the structure is closer than 0.77 Angstrom to a proper symmetry axis.

Note: Chain identifiers OK

WHAT CHECK has not detected any serious chain identifier problems. But be aware that WHAT CHECK doesn't care about the chain identifiers of waters.

Warning: Ligands for which a topology was generated automatically

The topology for the ligands in the table below were determined automatically. WHAT CHECK uses a local copy of the CCP4 monomer library to generate topology information for ligands. Be aware that automatic topology generation is a complicated task. So, if you get messages that you fail to understand or that you believe are wrong, and one of these ligands is involved, then check the ligand topology entry first. This topology is either present in the monomer library, or as a libcheck-generated file in the local directory.

  669 DAO  ( 408-) A  -

Note: Covalently bound ligands

No problems were detected that seem related to covalently bound ligands.

Administrative problems that can generate validation failures

Note: No strange inter-chain connections detected

No covalent bonds have been detected between molecules with non-identical chain identifiers.

Note: No duplicate atom names in ligands

All atom names in ligands (if any) seem adequately unique.

Note: In all cases the primary alternate atom was used

WHAT CHECK saw no need to make any alternate atom corrections (which means they either are all correct, or there are none).

Note: No residues detected inside ligands

Either this structure does not contain ligands with amino acid groups inside it, or their naming is proper (enough).

Note: No attached groups interfere with hydrogen bond calculations

It seems there are no sugars, lipids, etc., bound (or very close) to atoms that otherwise could form hydrogen bonds.

Note: No probable side chain atoms with zero occupancy detected.

Either there are no side chain atoms with zero occupancy, or the side chain atoms with zero occupancy were not present in the input PDB file (in which case they are listed as missing atoms), or their positions are sufficiently improbable to warrant a zero occupancy.

Note: No probable backbone atoms with zero occupancy detected.

Either there are no backbone atoms with zero occupancy, or the backbone atoms with zero occupancy were left out of the input PDB file (in which case they are listed as missing atoms), or their positions are sufficiently improbable to warrant a zero occupancy.

Note: All residues have a complete backbone.

No residues have missing backbone atoms.

Note: No C-alpha only residues

There are no residues that consist of only an alpha carbon atom.

Non-validating, descriptive output paragraph

Note: Content of the PDB file as interpreted by WHAT CHECK

Content of the PDB file as interpreted by WHAT CHECK. WHAT CHECK has read your PDB file, and stored it internally in what is called 'the soup'. The content of this soup is listed here. An extensive explanation of all frequently used WHAT CHECK output formats can be found at swift.cmbi.ru.nl. Look under output formats. A course on reading this 'Molecules' table is part of the WHAT CHECK website.

     1     1 (  -10)   334 (  317) A Protein             To check
     2   335 (  -10)   668 (  317) B Protein             To check
     3   669 (  408)   669 (  408) A DAO                 To check
     4   670 (  400)   670 (  400) A GOL                 To check
     5   671 (  401)   671 (  401) A GOL                 To check
     6   672 (  402)   672 (  402) A GOL                 To check
     7   673 (  403)   673 (  403) A GOL                 To check
     8   674 (  404)   674 (  404) A GOL                 To check
     9   675 (  407)   675 (  407) A GOL                 To check
    10   676 (  406)   676 (  406) B GOL                 To check
    11   677 ( HOH )   677 ( HOH ) A water   (  173)     To check
    12   678 ( HOH )   678 ( HOH ) B water   (   85)     To check
MODELs skipped upon reading PDB file: 0
X-ray structure. No MODELs found
The total number of amino acids found is 668
of which 38 have poor or (essentially) missing atoms
No nucleic acids observed in input file
No sugars recognized in input file
Number of water molecules: 258
 20 Residues (protein, nucleic, sugars) have a negative residue number.
Residue numbers increase monotonously OK

Some numbers...

Note: Ramachandran plot

Chain identifier: A

Note: Ramachandran plot

Chain identifier: B

Note: Secondary structure

Secondary structure assignment

Coordinate problems, unexpected atoms, B-factor and occupancy checks

Note: No rounded coordinates detected

Note: No artificial side chains detected

Warning: Missing atoms



Note: All B-factors fall in the range 0.0 - 100.0

Note: C-terminus capping




Note: Weights administratively correct

Note: Normal distribution of occupancy values



Note: All occupancies seem to add up to 0.0 - 1.0.

Warning: What type of B-factor?


Note: Number of buried atoms with low B-factor is OK

Note: B-factor distribution normal



Note: B-factor plot

Chain identifier: A

Note: B-factor plot

Chain identifier: B

Nomenclature related problems

Note: Introduction to the nomenclature section.

Note: Valine nomenclature OK

Note: Threonine nomenclature OK

Note: Isoleucine nomenclature OK

Note: Leucine nomenclature OK

Note: Arginine nomenclature OK

Warning: Tyrosine convention problem


Warning: Phenylalanine convention problem


Warning: Aspartic acid convention problem


Warning: Glutamic acid convention problem


Note: Phosphate group names OK in DNA/RNA

Note: Heavy atom naming OK

Note: No decreasing residue numbers

Geometric checks

Note: All bond lengths OK

Note: Normal bond length variability


Note: No bond length directionality

Warning: Unusual bond angles


Note: Normal bond angle variability


Error: Nomenclature error(s)


Note: Chirality OK

Note: Improper dihedral angle distribution OK

Error: Tau angle problems


Warning: High tau angle deviations

Note: Side chain planarity OK

Note: Atoms connected to aromatic rings OK

Torsion-related checks

Note: Ramachandran Z-score OK

Note: Ramachandran check

Warning: Torsion angle evaluation shows unusual residues


Warning: Backbone evaluation reveals unusual conformations


Error: Chi-1/chi-2 rotamer problems


Note: chi-1/chi-2 angle correlation Z-score OK

Warning: Unusual rotamers


Warning: Unusual backbone conformations


Note: Backbone conformation Z-score OK

Warning: Omega angles too tightly restrained

Warning: Unusual PRO puckering amplitudes


Note: PRO puckering phases OK

Note: Backbone oxygen evaluation OK

Warning: Possible peptide flips


Bump checks

Error: Abnormally short interatomic distances


Note: Some notes regarding these bumps









Packing, accessibility and threading

Note: Inside/outside distribution check

Note: Inside/Outside residue distribution normal

Note: Inside/Outside RMS Z-score plot

Chain identifier: A

Note: Inside/Outside RMS Z-score plot

Chain identifier: B

Warning: Abnormal packing environment for some residues


Note: No series of residues with bad packing environment

Note: Structural average packing environment OK

Note: Quality value plot

Chain identifier: A

Note: Quality value plot

Chain identifier: B

Warning: Low packing Z-score for some residues


Warning: Abnormal packing Z-score for sequential residues


Note: Second generation quality Z-score plot

Chain identifier: A

Note: Second generation quality Z-score plot

Chain identifier: B

Water, ion, and hydrogen bond related checks

Note: Crystallisation conditions from REMARK 280


Error: Water clusters without contacts with non-water atoms


Note: No waters need moving

Error: Water molecules without hydrogen bonds


Error: His, Asn, Gln side chain flips


Note: Histidine type assignments


Warning: Buried unsatisfied hydrogen bond donors


Warning: Buried unsatisfied hydrogen bond acceptors


Note: Some notes regarding these donors and acceptors


















Note: Content of the PDB file as interpreted by WHAT CHECK


Final summary

Note: Summary report







Suggestions for the refinement process

Note: Introduction to refinement recommendations

Note: No crippling problems detected

Error: Bumps in your structure

Note: Bond length variabilty Z-score low

Note: His, Asn, Gln side chain flips.

Note: Free floating waters

Residues in need of attention

Warning: Troublesome residues